Abstract

Oscillatory zoning (OZ) occurs in all major classes of minerals and also in a wide range of geological environments. It is caused by self-organization and describes fluctuations of the spatial chemical composition profile of the crystal. We present here a two-dimensional model of OZ based on our previous one-dimensional (1D) analysis and investigate whether the results of the 1D stability analysis remain valid. With the additional second dimension we were able to study the origin of the spatially homogeneous layer formation by linear stability analysis. Numerical solutions of the model are presented and the results of a Fourier analysis delivers a detailed understanding of the crystal growth behavior as well as the limits of the model. Effects beyond linear stability analysis are important to finally understand the final structure formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.