Abstract

One of the most important requirements for the materials (zirconium alloys) used in the reactor active zone is low hydrogen absorptivity, since hydrogen-induced embrittlement may cause zirconium cladding damage. Depending on the hydrogen content and operation temperature, hydrogen may be present in zirconium alloys as a solid solution or as hydrides. Hydrides have the greatest embrittlement effect on alloys as they can initiate and enlarge cracks. The problem is to model the dynamics of the moving boundary of phase transition and to estimate the concentration distribution in the hydride and the solution. This paper presents a mathematical model of zirconium alloy hydrogenation taking into account the phase transition (hydride formation) and the iterative computational algorithm for solving the nonlinear boundary-value problem with free phase boundary based on implicit difference schemes. The study was carried out under state order to the Karelian Research Centre of the Russian Academy of Sciences (Institute of Applied Mathematical Research KarRC RAS).

Highlights

  • Depending on the hydrogen content and operation temperature, hydrogen may be present in zirconium alloys as a solid solution or as hydrides

  • The problem is to model the dynamics of the moving boundary of phase transition and to estimate the concentration distribution in the hydride and the solution

  • This paper presents a mathematical model of zirconium alloy hydrogenation taking into account the phase transition and the iterative computational algorithm for solving the nonlinear boundary-value problem with free phase boundary based on implicit difference schemes

Read more

Summary

Introduction

В статье представлены корректировка математической модели гидрирования, поставленной в [3], для полого цилиндрического образца циркониевого сплава с учетом фазового перехода (гидридообразования) и итерационный вычислительный алгоритм решения нелинейной краевой задачи со свободной границей раздела фаз на основе неявных разностных схем. Следуя методу прогонки (алгоритм Томаса), ищем приближенные значения концентрации в узлах сетки на (n + 1)-м слое по времени в виде Следующий этап: с текущими приближениями значений C0n+1, CMn+1 решаем обратным ходом прогонки трехдиагональную систему линейных уравнений и находим новые приближения концентраций C1n,+2 1

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.