Abstract

This article describes a new approach to the study of the environmental conditions that relate to the Sardinella lemuru habitat in the Bali Strait, through remote sensing data and fish catch data using the generalized additive model. Data that are acquired daily and then compiled into monthly data for sea surface temperature, sea surface chlorophyll-a concentration, photosynthetically available radiation, and sea surface depth (SSD) were used for the years 2008–2010. The objectives of the study are to describe the variability of the environmental conditions in the Bali Strait, to analyze a combination model of environmental factors in estimating the Sardinella lemuru habitat, and to map potential Sardinella lemuru fishing areas. We illustrate the proposed method by constructing seven generalized additive models with catches of Sardinella lemuru as a variable response and use sea surface temperature, sea surface chlorophyll-a concentration, photosynthetically available radiation, and SSD as covariant models for assessing the environmental characteristics of the abundance of Sardinella lemuru. Predicted values were validated using a linear model. Based on the three model parameters, habitat selection for Sardinella lemuru was significantly (P < 0.0001) influenced by photosynthetically available radiation (50–55 Einstein m-2 d-1), sea surface chlorophyll-a concentration (0.2–2.0 mgm-3), sea surface temperature (28.95–29.64 °C), and SSD (60–150 m). Catch predictions show a consistent trend toward environmental conditions and water depth. Our method allows for improvement with the validation of catch predictions that were observed and collected monthly, and the result was significant (P < 0.001, r2 = 0.816). Photosynthetically available radiation explains the highest deviation in continued generalized additive models; therefore, it was considered to be the best predictor of habitat, followed by sea surface chlorophyll-a concentration, sea surface temperature, and then SSD. New research results supplement several previous studies that relate to the analysis of environmental parameters in estimating the fish habitat and can be used in mapping the distribution of potential Sardinella lemuru fishing areas in spatial and temporal scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call