Abstract

Ferromagnetic microparticles suspended at the interface between immiscible liquids and energized by an external alternating magnetic field show a rich variety of self-assembled structures, from linear snakes to radial asters. In order to obtain insight into the fundamental physical mechanisms and the overall balance of forces governing self-assembly, we develop a modeling approach based on analytical solutions of the time-averaged Navier-Stokes equations. These analytical expressions for the self-consistent hydrodynamic flows are then employed to modify effective interactions between the particles, which in turn are formulated in terms of the time-averaged quantities. Our method allows effective computational verification of the mechanisms of self-assembly and leads to a testable prediction, e.g., on the transitions between various patterns versus viscosity of the solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.