Abstract

Due to demands of lower costs and higher productivity in the steel industry, the volume of operating blast furnaces has grown during the last decades. As the height is limited by the allowable pressure drop, the hearth diameter has grown considerably and, along with this, also draining-related problems. In this paper a mathematical model is developed for simulating the drainage in the case where an impermeable region exists in the blast furnace hearth. The model describes the quasi-stationary drainage process of a hearth with two operating tapholes, where the communication between the two pools of molten slag and iron can be controlled by parameterized expressions. The model also considers the case where the buoyancy of the liquids is sufficient for lifting the coke bed. The implications of different size of the liquid pools, communication between the pools, bed porosity, etc. are studied by simulation, and conclusions concerning their effect on the drainage behavior and evolution of the liquid levels in the hearth are drawn. The simulated liquid levels are finally demonstrated to give rise to a pressure profile acting on the hearth which agrees qualitatively with signals from strain gauges mounted in the hearth wall of an industrial ironmaking process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.