Abstract

The Double Asteroid Redirection Test (DART) spacecraft will impact the moon Dimorphos of the [65803] Didymos binary in order to demonstrate asteroid deflection by a kinetic impactor. DART will measure the deflection by using ground-based telescopic observations of the orbital period change of Didymos and will carry the Light Italian CubeSat for Imaging of Asteroids (LICIACube) cubesat, which will perform a flyby of Didymos about 167 s after the DART impact, obtaining images of the DART impact ejecta plume. LICIACube images showing the ejecta plume spatial structure and temporal evolution will help determine the vector momentum transfer from the DART impact. A model is developed for the impact ejecta plume optical depth, using a point-source scaling model of the DART impact. The model is applied to expected LICIACube plume images and shows how plume images enable characterization of the ejecta mass versus velocity distribution. The ejecta plume structure, as it evolves over time, is determined by the amount of ejecta that has reached a given altitude at a given time. The evolution of the plume optical depth profiles determined from LICIACube images can distinguish between strength-controlled and gravity-controlled impacts, by distinguishing the respective mass versus velocity distributions. LICIACube plume images discriminate the differences in plume structure and evolution that result from different target physical properties, mainly the strength and porosity, thereby allowing inference of these properties to improve the determination of DART impact momentum transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call