Abstract

A model of dark matter and dark energy based on the concept of gravitational polarization is investigated. We propose an action in standard general relativity for describing, at some effective or phenomenological level, the dynamics of a dipolar medium, i.e. one endowed with a dipole moment vector, and polarizable in a gravitational field. Using first-order cosmological perturbations, we show that the dipolar fluid is undistinguishable from standard dark energy (a cosmological constant �) plus standard dark matter (a pressureless perfect fluid), and therefore benefits from the successes of the �-CDM (�-cold dark matter) scenario at cosmological scales. Invoking an argument of “weak clusterisation” of the mass distribution of dipole moments, we find that the dipolar dark matter reproduces the phenomenology of the modified Newtonian dynamics (MOND) at galactic scales. The dipolar medium action naturally contains a cosmological constant, and we show that if the

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.