Abstract
In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled f R theory of gravity. The strange matter MIT bag model equation of state (EoS) has been considered along with the usual forms of the Karori–Barua KB metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of strange matter EoS and KB type ansatz by employing the two viable and cosmologically well-consistent models of f R = R + γ R 2 and f R = R + γ R R + α R 2 . Thereafter, we have checked the physical acceptability of the proposed results such as pressure, energy density, energy conditions, TOV equation, stability conditions, mass function, compactness, and surface redshift by using graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or free from central singularity and always regular at every interior point of the compact sphere. The numerical values of such parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact stars such as CS1 SAXJ 1808 . 4 − 3658 ( x ˜ = 7.07 km , CS2 VelaX − 1 x ˜ = 9.56 km , and CS3 4U1820 − 30 x ˜ = 10 km and are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of two well-known f R models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit to compose the strange quark star object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.