Abstract

PurposeThe purpose of this paper is to develop a model that allows determining the boron concentration profile in silicon based on duration and temperature of the diffusion process.Design/methodology/approachThe model was developed on the basis of the Fick’s second law, which is fundamental for describing the diffusion process. The explicit scheme of the finite difference method was used in the conducted simulations. Results of measurements made using the secondary ion mass spectrometry (SIMS) were used as template dopant concentration profiles. Solution of boric acid in ethanol is the dopant source for which this model was developed.FindingsBased on the conducted simulations, it was proposed that besides the influence of electric field of ionized dopants, which is already described in literature, an appropriate factor reflecting the influence of the threshold concentration on the coefficient of diffusion of boron in silicone should also be introduced.Originality/valueThe developed model enables determination of the boron concentration profile in silicon consistent with the results of SIMS measurements. A factor taking into account the influence of threshold concentration on the coefficient of diffusion was introduced. The influence of concentration of boric acid in the dopant solution on the concentration profile was also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.