Abstract

A reactor is proposed for plasma-enhanced chemical-vapor deposition of silicon carbide (SiC) at low pressure (∼few Torr). The inductively coupled plasma lies upstream of the growth substrate and serves to dissociate the precursor silane/propane/hydrogen inlet gas. Unlike existing reactors, the design offers the potential for separate control of the temperature in the dissociation region and at the growth substrate. The geometrical parameters and flow conditions appropriate for SiC growth are analyzed with a one-dimensional flow simulation model which includes approximations for lateral diffusive losses to cold walls as well as deposition to the substrate. Twenty-one neutral species and 24 ions are followed with 179 reactions. At 3 Torr, 10 W/cm3, and 300 cm/s inlet flow velocity, the model predicts a growth rate of ∼3 μm/h downstream from the plasma. Negligible ion density exists over the substrate as long as the silane density is sufficiently large due to a feedback process between Si+ and SiH4. Besides heating the gas, the plasma is an efficient source of radical H atoms, which in turn control the abundance of some hydrocarbon species over the substrate. C2H2 is the dominant contributor to the C-bearing flux onto the substrate and the Si atom, which forms by electron reactions, is the most important Si-bearing species. Finally, a sensitive transition in deposition rate is found for the C-bearing species as the power increases from 5 to 10 W/cm3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call