Abstract

Self-consistent model of a small microwave plasma source based on a surface wave sustained discharge at 2.45 GHz is presented in this study. The model includes dispersion relation of azimuthally symmetric surface waves, sustaining the discharge in a high permittivity ceramic tube (εd = 9.3) and the radial distribution of the field components at curtain values of the electron density are obtained. The electron Boltzmann equation under the local approximation is solved together with the heavy particle balance equations. A detailed collisional-radiative model for argon discharge at atmospheric pressure is implemented in the model. The changes in the EEDF shape and the mean electron energy with the value of the electron density are investigated. Results show that the EEDF is close to Maxwellian at our experimental conditions for the plasma density above 2.1020 (m-3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call