Abstract

The implementation of the magnetically levitated train’s (MLT) levitation force (LF) occurs during the interaction between fields of superconductor train (STC) and short-circuited track contours (SCTC), which are the elements of levitation module (LM). Purpose. Based on above, the purpose of this study is to obtain a correct description of such interaction. At the present stage, the main and the most universal tool for the analysis and synthesis of processes and systems is their mathematical and, in particular, computer modeling. At the same time, the radical advantages of this tool make even more important the precision of choosing a specific methodology for research conducting. Methodology. This is particularly relevant in relation to such large and complex systems as MLT. For this reason, the work pays special attention to the reasoned choice of the selective features of the research paradigm. The analysis of existing versions of LF implementation’s models show that each of them, along with the advantages, also has significant drawbacks. Results. In this regard, one of the main result of the study should be the construction of this force implementation’s mathematical model, which preserves the advantages of the mentioned versions, but would be free from their shortcomings. The rationality of application, for the train’s LF researching, of an integrative holistic paradigm, which assimilates the advantages of the electric circuit and magnetic field theories, is reasonably justified in work. The scientific novelty of the research. The priority of creation of such a paradigm and the corresponding version of the implementation of LF’s model account for the novelty of the research. Practical significance of the work. The practical significance consists in the possibility, in case of using its results, of significantly increasing the efficiency of dynamic MLT research while reducing their resource costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.