Abstract
We have numerically investigated the dynamics of a long linear Josephson tunnel junction with overlap geometry (Flux-Flow Oscillator, FFO). The study is performed in the frame of a modified sine-Gordon model, which includes surface losses, self-pumping effect, and in an empirical way the superconducting gap. The electromagnetic coupling to the environment is modeled by a simple resistor-capacitor load (RC-load) placed at both ends of the FFO. In our model the damping parameter depends both on the spatial coordinate and on the amplitude of the AC voltage. In order to find the DC current-voltage curves the damping parameter has to be calculated self-consistently by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model gives better qualitative agreement with experimental results than the conventional perturbed sine-Gordon model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.