Abstract
We have discussed in some detail a variety of experimental studies which were designed to elucidate the conformational and dynamic properties of gramicidin and alamethicin. Although the behavior of these peptides is by no means fully characterized, these studies have already permitted aspects of ion channel activity to be understood in molecular terms. Studies with gramicidin in a variety of organic solutions have revealed conformational heterogeneity of this peptide; at least five major isomers exist, several of which have been characterized in detail using NMR spectroscopy and X-ray crystallography. When added to lipid membranes gramicidin undergoes a further conformational conversion. Although the conformation of gramicidin in membranes is not as well characterized as the solution conformation(s) and an X-ray structure is not yet available, detailed data, particularly from solid-state NMR studies, continue to become available and a right-handed beta 6.3 helical conformation of the peptide backbone is now generally accepted. Two of these beta 6.3 helices joined at their N-termini are believed to form the conducting channel. The conformational behavior of the side-chains of gramicidin in the membrane-bound form is not well established and several NMR, CD, fluorescence and theoretical studies are now focussed on this. Although the side-chains do not directly contact the permeating ions, they can have distinct effects on conductance and selectivity by altering the electrostatic environment sensed by the ion. The dynamics of both side-chain and backbone conformations of gramicidin appear critical to a detailed understanding of the ion transport process in this channel. As the description of the membrane-bound conformation of gramicidin becomes more detailed, simulations of ion transport using computational methods are likely to improve and will further our understanding of the processes of ion transport. As well as internal motion of the backbone and side-chains, gramicidin undergoes rotational and translational motion in the plane of the membrane. These motions do not appear to be essential for the process of ion transport but can affect channel lifetime since lifetime is determined by the rate of association and dissociation of gramicidin monomers. Gramicidin-membrane interactions are also likely to be involved in the frequency of occurrence of channel subconductance states, the frequency of channel flickering and fundamentally in the stability of the membrane-bound gramicidin conformation. Alamethicin forms channels in membranes which are strongly voltage-dependent. The molecular origin of voltage-dependent conductances has been a fundamental problem in biophysics for many years.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.