Abstract
In the continuous-casting mold, the mold powder in contact with the liquid steel surface forms a liquid slag layer. The flow along the steel-slag interface generates shear stress at the interface, waves, and leads to fingerlike protrusions of liquid slag into steel. Reaching a critical flow velocity and thereby shear stress, the protrusions can disintegrate into slag droplets following the flow in the liquid steel pool. These entrained droplets can form finally nonmetallic inclusions in steel material, cause defects in the final product, and therefore, should be avoided. In the current work, the stability of a liquid-liquid interface without mass transfer between phases was investigated in cold model study using a single-roller driven flow in oil-water systems with various oil properties. Applying the similarity theory, two dimensionless numbers were identified, viz. capillary number Ca and the ratio of kinematic viscosities ν 1/ν 2, which are suitable to describe the force balance for the problem treated. The critical values of the dimensionless capillary number Ca* marking the start of lighter phase entrainment into the heavier fluid, are determined over a wide range of fluid properties. The dimensionless number ν 1/ν 2 was defined as the ratio of kinematic viscosities of the lighter phase ν 1 and heavier phase ν 2. The ratios of kinematic viscosities of different steel-slag systems were calculated using measured thermophysical properties. With the knowledge of thermophysical properties of steel-slag systems, Ca* for slag entrainment as a function of v 1/v 2 is derived. Assuming no reaction between the phases and no interfacial flow, slag entrainment should not occur under the usual casting conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.