Abstract

Gravitational wave (GW) data can be used to test the parity symmetry of gravity by investigating the difference between left-hand and right-hand circular polarization modes. In this article, we develop a method to decompose the circular polarizations of GWs produced during the inspiralling stage of compact binaries, with the help of stationary phase approximation. The foremost advantage is that this method is simple, clean, independent of GW waveform, and is applicable to the existing detector network. Applying it to the mock data, we test the parity symmetry of gravity by constraining the velocity birefringence of GWs. If a nearly edge-on binary neutron-stars with observed electromagnetic counterparts at 40 Mpc is detected by the second-generation detector network, one could derive the model-independent test on the parity symmetry in gravity: the lower limit of the energy scale of parity violation can be constrained within mathcal {O}(10^4mathrm{eV}).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.