Abstract

A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron star structure. We determine the maximum and minimum values possible for the moment of inertia of a neutron star of a given radius based on physical stability arguments, assuming knowledge of the equation of state only at densities below the nuclear saturation density. If the equation of state is trusted up to the nuclear saturation density, we find that a measurement of the moment of inertia will place absolute bounds on the radius of PSR J0737-3039A to within $\pm$1 km. The resulting combination of moment of inertia, mass, and radius measurements for a single source will allow for new, stringent constraints on the dense-matter equation of state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.