Abstract

Abstract In this paper, different techniques of analysis have been used to study the effects of perturbations generated from a robotic mobile platform called Isiskate. These disturbances were applied on two categories of people: post-CVA subjects suffering from cerebrovascular accident and healthy individuals. Our aim is to analyze some assessment tools to distinguish between different postural behaviors. In relevant works, very few studies have addressed the use of nonlinear time-series methods in diagnosis of post-CVA pathological postural behavior. Furthermore, our tools are based on parametric and non-parametric identification procedures, that can yield to an insight on how to improve the examination time. As part of our analysis, the tests were established with several levels of sinusoidal vibrations, along the anterior–posterior (A/P) and medial–lateral (M/L) planes. The mobile platform allowed us to record a set of coordinates that includes center of pressure (COP) as a function of time. First, we have quantified some linear parameters and spectral characteristics using power spectral density (PSD). Thereafter, we have deduced stochastic parameters using stabilogram diffusion analysis (SDA), which revealed some interesting invariants. Then transfer functions between the platform velocity and COP trajectory were evaluated. They were carried out at frequencies from 0.1 Hz to 3.3 Hz. Furthermore, we accomplished a comparison of models based on both parametric and nonparametric identification methods. The combination of the proposed techniques has provided us an understanding of human control process by establishing a behavior model and helped us to distinguish patients with postural disorders. This improves postural analysis and facilitates the diagnosis of pathologies related to equilibrium which serves in rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.