Abstract

The emergent magnetic soft guidewires (MSGs) that can be remotely navigated by magnetic fields hold great promise in minimally invasive endovascular surgery. However, existing models of MSGs have been limited in practical applications, largely due to insufficient consideration of contacts within actual endovascular settings. In this work, we present a theoretical model incorporating the magneto-mechanical behavior of MSGs with these critical contacts, allowing for a detailed evaluation of their navigation capability in various vascular configurations. Specifically, we categorize blood vessels into two main types: curved vessels and bifurcated vessels and identify a critical contact angle between the MSG tip and the vessel wall, beyond which the vascular damage may occur. By applying the principles of hard-magnetic elastica to account for the large deflection of MSGs, we develop a numerical framework that employs polynomial approximations and an energy minimization strategy. Through parametric analysis of different vessel types, we propose a method for adjusting magnetic fields for the safe navigation of MSGs through them. Our theoretical predictions have been substantiated by finite element modeling and experimental validation. The results of this paper offer a solid foundation for establishing practical guidelines for remote MSG navigation with minimal risk of vascular damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.