Abstract

With an increased adoption of continuous manufacturing for pharmaceutical production, the ConsiGma® CTL25 wet granulation and tableting line has reached widespread use. In addition to the continuous granulation step, the semi-continuous six-segmented fluid bed dryer is a key unit in the line. The dryer is expected to have an even distribution of the inlet air between the six drying cells. However, process observations during manufacturing runs showed a repeatable pattern in drying time, which suggests a variability in the drying performance between the different cells of the dryer. The aim of this work is to understand the root-cause of this variability. In a first step, the variability in the air temperature and air flow velocity between the dryer cells was measured on an empty dryer. In a second step, the experimental data were interpreted with the help of results from computational fluid dynamics (CFD) simulations to better understand the reasons for the observed variability. The CFD simulations were used to identify one cause of the measured difference in the air temperature, showing the impact of the air inlet design on the temperature distribution in the dryer. Although the simulation could not predict the exact temperature, the trend was similar to the experimental observations, demonstrating the added value of this type of simulation to guide process development, engineering decisions and troubleshoot equipment performance variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.