Abstract
Unfused tetani of motor units (MUs) evoked by stimulation at variable interpulse intervals at mean frequencies of 20, 25, 33, 40 and 50 Hz were studied using ten functionally isolated fast-type MUs from the medial gastrocnemius muscle of adult Wistar rats. A previously proposed algorithm and computer program for mathematical decomposition of unfused tetani into a series of twitches, representing responses to individual pulses, were used. Analysis of the parameters of the decomposed twitches showed considerable variability in force of successive contractions. These twitches were extremely variable with up to 2-fold higher forces and longer contraction times than a single twitch evoked by one stimulus. However, when the stimulation frequency was decreased, the decomposed twitches became similar to the single twitch with respect to amplitude and contraction time. It was found that the basic contractile parameters of decomposed twitches could be predicted with high accuracy on the basis of the tetanus force level at which the next contraction begins. This analysis of the parameters of decomposed twitches demonstrated that the contractile responses of the muscle fibers to successive action potentials generated by motoneurons are highly variable and depend on the previous MU state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.