Abstract
Unconventional secretory proteins (USPs) are vital for cell-to-cell communication and are necessary for proper physiological processes. Unlike classical proteins that follow the conventional secretory pathway via the Golgi apparatus, these proteins are released using unconventional pathways. The primary modes of secretion for USPs are exosomes and ectosomes, which originate from the endoplasmic reticulum. Accurate and rapid identification of exosome-mediated secretory proteins is crucial for gaining valuable insights into the regulation of non-classical protein secretion and intercellular communication, as well as for the advancement of novel therapeutic approaches. Although computational methods based on amino acid sequence prediction exist for predicting unconventional proteins secreted by exosomes (UPSEs), they suffer from significant limitations in terms of algorithmic accuracy. In this study, we propose a novel approach to predict UPSEs by combining multiple deep learning models that incorporate both protein sequences and evolutionary information. Our approach utilizes a convolutional neural network (CNN) to extract protein sequence information, while various densely connected neural networks (DNNs) are employed to capture evolutionary conservation patterns.By combining six distinct deep learning models, we have created a superior framework that surpasses previous approaches, achieving an ACC score of 77.46% and an MCC score of 0.5406 on an independent test dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.