Abstract

Designing the optimal linear quadratic regulator (LQR) for a large-scale multiagent system is time consuming since it involves solving a large-size matrix Riccati equation. The situation is further exasperated when the design needs to be done in a model-free way using schemes such as reinforcement learning (RL). To reduce this computational complexity, we decompose the large-scale LQR design problem into multiple small-size LQR design problems. We consider the objective function to be specified over an undirected graph, and cast the decomposition as a graph clustering problem. The graph is decomposed into two parts, one consisting of independent clusters of connected components, and the other containing edges that connect different clusters. Accordingly, the resulting controller has a hierarchical structure, consisting of two components. The first component optimizes the performance of each independent cluster by solving the small-size LQR design problem in a model-free way using an RL algorithm. The second component accounts for the objective coupling different clusters, which is achieved by solving a least-squares problem in one shot. Although suboptimal, the hierarchical controller adheres to a particular structure as specified by interagent couplings in the objective function and by the decomposition strategy. Mathematical formulations are established to find a decomposition that minimizes the number of required communication links or reduces the optimality gap. Numerical simulations are provided to highlight the pros and cons of the proposed designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.