Abstract

As a result of inherent flexibility and structural compliance, continuum robots have great potential in practical applications and are attracting more and more attentions. However, these characteristics make it difficult to acquire the accurate kinematics of continuum robots due to uncertainties, deformation and external loads. This paper introduces a method based on a zeroing neurodynamic approach to solve the trajectory tracking problem of continuum robots. The proposed method can achieve the control of a bellows-driven continuum robot just relying on the actuator input and sensory output information, without knowing any information of the kinematic model. This approach reduces the computational load and can guarantee the real time control. The convergence, stability, and robustness of the proposed approach are proved by theoretical analyses. The effectiveness of the proposed method is verified by simulation studies including tracking performance, comparisons with other three methods, and robustness tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call