Abstract
Both thermal and catalytic decomposition of waste LDPE sample is studied to understand the effect of catalyst (ZSM-5) on the decomposition behaviour. The nonlinear Vyazovkin model-free technique is applied to evaluate the quantitative information on variation of E α with α for waste LDPE sample under both catalytic and noncatalytic nonisothermal conditions. The literature reported data on such variation under noncatalytic condition and effects of different catalysts on the LDPE sample are compared with the results of the present study. Results show that the optimum catalyst composition is around 20 wt.%, where the reduction in maximum decomposition temperature is around 70 °C. Presence of ZSM-5 shows similar reduction in maximum decomposition temperature as reported for Al-MCM-41 and MCM-41. Similar trend to literature reported data is observed for variation of E α with α for LDPE under nonisothermal noncatalytic condition. ZSM-5 catalyzed decomposition of the LDPE sample in the present study indicates that E α is strong and increasing function of α and consists of four steps. Cracking of large polymer fragments on the external surface of the catalyst, oligomerization, cyclization, and hydrogen transfer reactions inside the catalyst pores might be the possible reaction mechanisms involved during catalytic decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.