Abstract
A price process is scale-invariant if and only if the returns distribution is independent of the price measurement scale. We show that most stochastic processes used for pricing options on financial assets have this property and that many models not previously recognised as scale-invariant are indeed so. We also prove that price hedge ratios for a wide class of contingent claims under a wide class of pricing models are model-free. In particular, previous results on model-free price hedge ratios of vanilla options based on scale-invariant models are extended to any contingent claim with homogeneous pay-off, including complex, path-dependent options. However, model-free hedge ratios only have the minimum variance property in scale-invariant stochastic volatility models when price–volatility correlation is zero. In other stochastic volatility models and in scale-invariant local volatility models, model-free hedge ratios are not minimum variance ratios and our empirical results demonstrate that they are less efficient than minimum variance hedge ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.