Abstract
Reservoir computing is a powerful tool for forecasting turbulence because its simple architecture has the computational efficiency to handle high-dimensional systems. Its implementation, however, often requires full state-vector measurements and knowledge of the system nonlinearities. We use nonlinear projector functions to expand the system measurements to a high dimensional space and then feed them to a reservoir to obtain forecasts. We demonstrate the application of such reservoir computing networks on spatiotemporally chaotic systems, which model several features of turbulence. We show that using radial basis functions as nonlinear projectors enables complex system nonlinearities to be captured robustly even with only partial observations and without knowing the governing equations. Finally, we show that when measurements are sparse or incomplete and noisy, such that even the governing equations become inaccurate, our networks can still produce reasonably accurate forecasts, thus paving the way towards model-free forecasting of practical turbulent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.