Abstract
In this paper, the conditional distance correlation (CDC) is used as a measure of correlation to develop a conditional feature screening procedure given some significant variables for ultrahigh-dimensional data. The proposed procedure is model free and is called conditional distance correlation-sure independence screening (CDC-SIS for short). That is, we do not specify any model structure between the response and the predictors, which is appealing in some practical problems of ultrahigh-dimensional data analysis. The sure screening property of the CDC-SIS is proved and a simulation study was conducted to evaluate the finite sample performances. Real data analysis is used to illustrate the proposed method. The results indicate that CDC-SIS performs well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.