Abstract

Detecting and isolating faults in cyber-physical systems (CPSs), e.g., critical infrastructures, smart buildings/cities, and the internet-of-things, are tasks that do generally scale badly with the CPS size. This work introduces a model-free fault detection and diagnosis system (FDDS) designed, having in mind scalability issues, so as to be able to detect and isolate faults in CPSs characterised by a large number of sensors. Following the model-free approach, the proposed FDDS learns the nominal fault-free conditions of the large-scale CPS autonomously by exploiting the temporal and spatial relationships existing among sensor data. The novelties in this paper reside in 1) a clustering method proposed to partition the large-scale CPS into groups of highly correlated sensors in order to grant scalability of the proposed FDDS, and 2) the design of model- and fault-free mechanisms to detect and isolate multiple sensor faults, and disambiguate between sensor faults and time variance of the physical phenomenon the cyber layer of CPS inspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.