Abstract

One of the challenging problems in sensor network systems is to estimate and track the state of a target point mass with unknown dynamics. Recent improvements in deep learning (DL) show a renewed interest in applying DL techniques to state estimation problems. However, the process noise is absent which seems to indicate that the point-mass target must be non-maneuvering, as process noise is typically as significant as the measurement noise for tracking maneuvering targets. In this paper, we propose a continuous-time (CT) model-free or model-building distributed reinforcement learning estimator (DRLE) using an integral value function in sensor networks. The DRLE algorithm is capable of learning an optimal policy from a neural value function that aims to provide the estimation of a target point mass. The proposed estimator consists of two high pass consensus filters in terms of weighted measurements and inverse-covariance matrices and a critic reinforcement learning mechanism for each node in the network. The efficiency of the proposed DRLE is shown by a simulation experiment of a network of underactuated vertical takeoff and landing aircraft with strong input coupling. The experiment highlights two advantages of DRLE: i) it does not require the dynamic model to be known, and ii) it is an order of magnitude faster than the state-dependent Riccati equation (SDRE) baseline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.