Abstract

The present paper deals with the problem of fault detection and diagnosis in large scale engineering processes. These processes are typically equipped with database management systems and data logging servers whereby the measurement data is cleaned and stored. The expert knowledge of engineers and technicians as well as historical data records about abnormal scenarios experienced in the past is often available at hand. In this work we propose a framework where fault detection and classification can be done online directly on new data record without dimensionality reduction or any distributional assumptions. The proposed algorithm is based on a two-sample test via kernel mean embeddings of probability distributions. The Tennessee Eastman benchmark process is used to assess this new data-driven approach on different simulated faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.