Abstract
This paper generalizes recent results by the authors on noninvasive model-reference adaptive control designs for control-based continuation of periodic orbits in periodically excited linear systems with matched uncertainties to a larger class of periodically excited nonlinear systems with matched uncertainties and known structure. A candidate adaptive feedback design is also proposed in the case of scalar problems with unmodeled nonlinearities. In the former case, rigorous analysis shows guaranteed performance bounds for the associated prediction and estimation errors. Together with an assumption of persistent excitation, there follows asymptotic convergence to periodic responses determined uniquely by an a priori unknown periodic reference input and independent of initial conditions, as required by the control-based continuation paradigm. In particular, when the reference input equals the sought periodic response, the steady-state control input vanishes. Identical conclusions follow for the case of scalar dynamics with unmodeled nonlinearities, albeit with slow rates of convergence. Numerical simulations validate the theoretical predictions for individual parameter values. Integration with the software package coco demonstrates successful continuation along families of stable and unstable periodic orbits with a minimum of parameter tuning. The results expand the envelope of known noninvasive feedback strategies for use in experimental model validation and engineering design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.