Abstract

This paper presents the design and experimental validation of a new model-free data-driven iterative reference input tuning (IRIT) algorithm that solves a reference trajectory tracking problem as an optimization problem with control signal saturation constraints and control signal rate constraints. The IRIT algorithm design employs an experiment-based stochastic search algorithm to use the advantages of iterative learning control. The experimental results validate the IRIT algorithm applied to a non-linear aerodynamic position control system. The results prove that the IRIT algorithm offers the significant control system performance improvement by few iterations and experiments conducted on the real-world process and model-free parameter tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.