Abstract
In this article, a model-free adaptive control (MFAC) algorithm based on full form dynamic linearization (FFDL) data model is presented for a class of unknown multi-input multi-output (MIMO) nonaffine nonlinear discrete-time learning systems. A virtual equivalent data model in the input-output sense to the considered plant is established first by using the FFDL technology. Then, using the obtained data model, a data-driven MFAC algorithm is designed merely using the inputs and outputs data of the closed-loop learning system. The theoretical analysis of the monotonic convergence of the tracking error dynamics, the bounded-input bounded-output (BIBO) stability, and the internal stability of the closed-loop learning system is rigorously proved by the contraction mapping principle. The effectiveness of the proposed control algorithm is verified by a simulation and a quad-rotor aircraft experimental system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.