Abstract

AbstractThis article proposes a distributed model‐free adaptive consensus tracking control (DMFACTC) approach for a class of unknown heterogeneous nonlinear discrete‐time multi‐agent systems (MASs) with sensor saturation and measurement disturbance to perform consensus tracking tasks. Meanwhile, both fixed and switching topologies are considered, where only a subset of agents can acquire the desired trajectory information in each topology. A time‐varying linear data model for each agent is first established by utilizing the dynamic linearization method to formulate this algorithm. Merely, the input data and the saturated output data with measurement disturbance of each agent are applied to construct the DMFACTC algorithm without employing any dynamics model information of MASs. The convergence of the designed scheme is strictly proved. It illustrates that the output saturation and switching topologies do not affect the stability of MASs. Moreover, even if the sensor saturation, measurement disturbance, and switching topologies happen simultaneously, the DMFACTC also guarantees that the tracking errors of MASs converge to a small range around the origin. Furthermore, two numerical simulations and a realistic filling system simulation further verify the correctness and effectiveness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.