Abstract

The study’s objective is to analyze the mechanical properties of steel pipe piles as a part of a trestle bridge subjected to five years of natural marine corrosion degradation. Sixteen tensile specimens are extracted from the steel pipe piles in the splash, tidal, and immersion zones. The experimental tensile test results are used to establish regression equations defining the elastic modulus, yield strength, strain hardening index, and strength coefficient for the true stress–strain curves of the three regions. A non-linear time-dependent mathematical model is exploited to identify the corrosion degradation, using the data from one single corrosion degradation measurement campaign. The analysis indicates that the splash zone is experiencing the most severe corrosion degradation, and there are progressive losses in the mechanical properties of each zone as the corrosion degradation progresses. The established relationships of the mechanical properties, as a function of the ratio of corroded plate thickness to the as-built one, can be used as a fast-engineering approach to identify the mechanical properties of severely corroded piles. The corrosion degradation allowance is also defined using the first-order reliability method, accounting for existing uncertainties covered by the partial safety factors. By examining the impact of marine corrosion on the mechanical properties of marine structures and developing predictive models to assess the corrosion’s effect on material strength and corrosion allowance, the study aims to improve offshore structures’ safety, design, and maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call