Abstract

The structure of vitronectin, an adhesive protein that circulates in high concentrations in human plasma, was predicted through a combination of computational methods and experimental approaches. Fold recognition and sequence-structure alignment were performed using the threading program PROSPECT for each of three structural domains, i.e., the N-terminal somatomedin B domain (residues 1-53), the central region that folds into a four-bladed beta-propeller domain (residues 131-342), and the C-terminal heparin-binding domain (residues 347-459). The atomic structure of each domain was generated using MODELLER, based on the alignment obtained from threading. Docking experiments between the central and C-terminal domains were conducted using the program GRAMM, with limits on the degrees of freedom from a known inter-domain disulfide bridge. The docked structure has a large inter-domain contact surface and defines a putative heparin-binding groove at the inter-domain interface. We also docked heparin together with the combined structure of the central and C-terminal domains, using GRAMM. The predictions from the threading and docking experiments are consistent with experimental data on purified plasma vitronectin pertaining to protease sensitivity, ligand-binding sites, and buried cysteines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.