Abstract

A simplified flowpath analysis of a single-tube airbreathing pulse detonation engine is described. The configuration consists of a steady supersonic inlet, a large plenum, a valve, and a straight detonation tube (no exit nozzle). The interaction of the filling process with the detonation is studied, and it is shown how the flow in the plenum is coupled with the flow in the detonation tube. This coupling results in total pressure losses and pressure oscillations in the plenum caused by the unsteadiness of the flow. Moreover, the filling process generates a moving flow into which the detonation has to initiate and propagate. An analytical model is developed for predicting the flow and estimating performance based on an open-system control volume analysis and gasdynamics. The existing single-cycle impulse model is extended to include the effect of filling velocity on detonation tube impulse. Based on this, the engine thrust is found to be the sum of the contributions of detonation tube impulse, momentum, and pressure terms. Performance calculations for pulse detonation engines operating with stoichiometric hydrogen–air and JP10–air are presented and compared to the performance of the ideal ramjet over a range of Mach numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.