Abstract

Abstract The understanding of blinking quantum dots (QDs) is an open problem since more than a decade. We have investigated the off-time distribution of a semiconductor QD on the basis of an Auger-induced release process of an electron deeply trapped in the QD shell. This release process has not yet been treated in the literature explicitly and starts with the optical generation of an additional electron–hole pair in the off-state of a QD, characterized by a valence band hole in the core and a trapped electron in the shell. This additional pair subsequently recombines and the recombination energy is transferred by an Auger process to the trapped electron. We discuss the efficiency of the release process as compared to the quenching process. For a deep trap occupation density ∼ 1 / r 0 6 ( r 0 is the trap distance from the QD center) and a Forster-like release rate, we arrive at an off-time distribution ∼ 1 / t off α with α = 3 / 2 in agreement with experimental findings in many QDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.