Abstract

We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface defect structure in metal-oxide-semiconductor field-effect transistors (MOSFETs). This proof-of-concept work illustrates that quantitative BAE measurements can be made to determine interface defect densities and allows for predictions of optimal EDMR BAE biasing. Furthermore, this work also provides an initial step forward for a theory based on spin-dependent recombination measurements utilizing BAE EDMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.