Abstract
We derive an expression that represents the physical behavior of a polysaccharide molecule as it is stretched from the entropic region, through one or more ring conformational transformations, into the Hookean regime. The model adapts existing models in order to accommodate one or more force-induced conformational transformations of the glycan rings and is based on the concept of equilibrium between the clicked (longer conformers) and unclicked states. This equilibrium is determined by the Gibbs energy difference between these two states which is perturbed in favor of the clicked states by the force applied to the molecule. The derived expression is used to generate force-extension curves for model polymers and can illustrate the effect of the Gibbs energy for each transformation on the shape of these curves. It is also used to fit the force-extension curves of polysaccharides to obtain the Gibbs energy differences between the conformers. Good agreement was found between this model and experimental data on carboxymethylamylose, dextran, alginate, and pectin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.