Abstract
Tuberculosis (TB) is a disease caused by the bacterium Mycobacterium tuberculosis and despite effective treatments, still affects millions of people worldwide. The advent of new treatments has not eliminated the significant challenge of TB drug resistance. Repeated and inadequate exposure to drugs has led to the development of strains of the bacteria that are resistant to conventional treatments, making the eradication of the disease even more complex. In this context, it is essential to seek more effective approaches to fighting TB. This article proposes a model for predicting drug resistance based on the clinical profile of TB patients, using machine learning techniques. The model aims to optimize the work of health professionals directly involved with tuberculosis patients, driving the creation of new containment strategies and preventive measures, as it specifies the clinical data that has the greatest impact and identifies the individuals with the greatest predisposition to develop resistance to anti-tuberculosis drugs. The results obtained show, in one of the scenarios, a probability of development of 70% and an accuracy of 84.65% for predicting drug resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.