Abstract

A mathematical model based on continuity and Navier-Stokes equations, considering laminar flow in the gap between the disks, is presented to estimate the drag torque in open multidisks wet clutches. By taking into account the effects of Poiseuille and centrifugal forces, the flow pressure and velocity fields are investigated. The model quantifies the volume fraction of fluids and predicts the evolution of film shape. The drag torque estimated by the model is the sum of drag torque due to shearing of automatic transmission fluid (ATF) and the mist (suspension of ATF in air) film. In order to validate the model, experiments are performed on SAE# 2 test-setup under actual operating conditions of clutches. The model is capable of predicting the drag torque under conditions of variable flow rate and different disks rotational state for higher clutch speed range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.