Abstract

A tension stiffening model is presented which enables the calculation of average tensile stresses in concrete, after yielding of reinforcement, in reinforced concrete elements subjected to uniaxial tension, shear or flexure. To determine the average tensile stress–strain relationship for concrete, a crack analysis approach is employed taking into account the bond mechanism between concrete and deformed reinforcing bars, and numerical analyses are conducted to determine the tensile behavior of reinforced concrete members including post-yield response. Analytical parametric studies are conducted to determine the influence of various parameters including concrete compressive strength and reinforcement yield strength, ultimate strength, hardening stress, and hardening strain. Analysis results obtained from the proposed model, when compared to experimental results for uniaxial members, indicate good agreement for structural behavior after yielding of reinforcement. The proposed model makes it possible to accurately calculate reinforcement stresses at crack locations and, thus, average strain conditions which result in rupture of reinforcement. This leads to more realistic predictions of the uniaxial, flexural, and shear ductility of reinforced concrete members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.