Abstract

Orchidaceae, the orchid family under the order Asparagales, contains more than 20,000 accepted species in approximately 880 genera1–3. In contrast to most flowers of actinomorphic symmetry, orchid flowers typically have zygomorphic symmetry with a striking well-differentiated labellum (lip) that acts as the main pollinator attractant by employing visual, fragrance and tactile cues4–7. Genetics models controlling patterning formation of actinomorphic flowers, such as Arabidopsis, are well known. However, the mechanisms of sepal/petal/lip determination remain obscure. Here, we demonstrate a conserved principle, called the Perianth (P) code, which involves competition between two protein complexes containing different AP3/AGL6 homologues to determine the formation of the complex perianth patterns in orchids. In the P code, the higher-order heterotetrameric SP (sepal/petal) complex (OAP3-1/OAGL6-1/OAGL6-1/OPI) specifies sepal/petal formation, whereas the L (lip) complex (OAP3-2/OAGL6-2/OAGL6-2/OPI) is exclusively required for lip formation. This model is validated by the conversion of lips into sepal/petal structures in Oncidium and Phalaenopsis orchids through the suppression of the proposed L complex activity in lips using the virus-induced gene silencing (VIGS) strategy. A comprehensive examination of four different subfamilies of Orchidaceae further validates the P code and significantly extends the current knowledge regarding the mechanism and pathways of perianth formation in orchids. The mechanisms of sepal/petal/lip determination in orchids remain obscure. Now a study reveals competition between two protein complexes containing different AP3/AGL6 homologues determine the formation of the complex perianth patterns in orchids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call