Abstract
• A model for predicting hydrogen accumulation in co-deposited layers was developed. • The model was successfully verified in regards to the role of substrate temperature for W-D, Mo-D, Al-D co-deposition. • The model was tested against empirical scaling equations for W-D co-deposition. An improved diffusion based model for prediction of the hydrogen content in co-deposited layers depending on the deposition conditions (the properties of the material which is co-deposited with hydrogen, rate of deposition, hydrogen flux and particle energy, substrate temperature) is presented. The model is validated using experimental data for W, Mo and Al, and is compared to empirical scaling equations currently in use. It is shown that a good agreement is observed in regards to hydrogen content vs substrate temperature experimental data, and no disagreement with scaling equations can be seen in regards to the role of hydrogen flux and the rate of deposition. It is shown that the influence of hydrogen particle energy on the hydrogen content requires further investigation. In addition to hydrogen, models for other mobile impurities both in co-deposited layers and in layers under steady-state net erosion conditions are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.