Abstract

This paper describes the development of a numerical model, called CSTCRS1, for one-dimensional coupled contaminant transport and large strain consolidation under constant rate of strain (CRS) loading conditions. Numerical simulations using CSTCRS1 indicate that concentration boundary conditions can have an important effect on contaminant transport during CRS consolidation. For the conditions considered, zero concentration gradient and reservoir boundary conditions yielded the same contaminant mass outflows regardless of the transport mechanisms (i.e., diffusion, mechanical dispersion, and sorption). However, these transport mechanisms become important when a zero concentration boundary condition is specified. Additional simulations indicate that applied strain rate also has an important effect on the coupled CRS consolidation and contaminant transport. A higher strain rate will generally yield more non-uniform local strain profiles, smaller contaminant mass outflow, and a larger concentration gradient within specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.