Abstract

A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper surface is used to compute growth of a single-layer graphene island. The speed of the island's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.