Abstract
<span lang="EN-US">Autism spectrum disorder (ASD) is a neurodegenerative illness that impacts individuals' social abilities. The majority of available approaches rely on structural and resting-state functional magnetic resonance imaging (fMRI) to detect ASD with a small dataset, resulting in high accuracy but low generality. To detect ASD with a limited dataset, the bulk of known technologies involve Machine Learning, pattern recognition, and other techniques, leading to high accuracy but moderate generality. To address this constraint and improve the efficacy of the automated autism diagnosis model, an ASD detection model based on deep learning (DL) is provided in this work. The classification challenge is solved using a convolutional neural network classifier. The suggested model beats state-of-the-art methodologies in terms of accuracy, according to simulation findings. The proposed approach investigates how anatomical and functional connectivity indicators can be used to determine whether or not a person is autistic. The proposed method delivers state-of-the-art results, with the classification of Autistic patients achieving 93.41% accuracy and the localization of the classified data regressed to 0.29 mean absolute error (MAE).</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.