Abstract

We have recently developed a coupled chemistry-emission model for the green (5577Å) and red-doublet (6300, 6364Å) emissions of atomic oxygen on Comet C/1996 B2 Hyakutake. In the present work we applied our model to Comet C/1995 O1 Hale-Bopp, which had an order of magnitude higher H2O production rate than Comet Hyakutake, to evaluate the photochemistry associated with the production and loss of O(1S) and O(1D) atoms and emission processes of green and red-doublet lines. We present the wavelength-dependent photo-attenuation rates for different photodissociation processes forming O(1S) and O(1D). The calculated radiative efficiency profiles of O(1S) and O(1D) atoms show that in Comet Hale-Bopp the green and red-doublet emissions are emitted mostly above radial distances of 103 and 104km, respectively. The model calculated [OI] 6300Å emission surface brightness and average intensity over the Fabry-Pérot spectrometer field of view are consistent with the observation of Morgenthaler et al. (Morgenthaler, J.P. et al. [2001]. Astrophys. J. 563, 451–461), while the intensity ratio of green to red-doublet emission is in agreement with the observation of Zhang et al. (Zhang, H.W., Zhao, G., Hu, J.Y. [2001]. Astron. Astophys. 367 (3), 1049–1055). In Comet Hale-Bopp, for cometocentric distances less than 105km, the intensity of [OI] 6300Å line is mainly governed by photodissociation of H2O. Beyond 105km, O(1D) production is dominated by photodissociation of the water photochemical daughter product OH. Whereas the [OI] 5577Å emission line is controlled by photodissociation of both H2O and CO2. The calculated mean excess energy in various photodissociation processes show that the photodissociation of CO2 can produce O(1S) atoms with higher excess velocity compared to the photodissociation of H2O. Thus, our model calculations suggest that involvement of multiple sources in the formation of O(1S) could be a reason for the larger width of green line than that of red-doublet emission lines observed in several comets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.